This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

New Biologically Active N-(Tetrahydrobenzothienopyrimidin-4-YL)-Amino Acids, Thiourethane, Sulfonamides and Related Compounds

M. M. Ghoraba

^a Department of Drug Radiation Research, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt

To cite this Article Ghorab, M. M.(2000) 'New Biologically Active N-(Tetrahydrobenzothienopyrimidin-4-YL)-Amino Acids, Thiourethane, Sulfonamides and Related Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 165: 1,221-235

To link to this Article: DOI: 10.1080/10426500008076341 URL: http://dx.doi.org/10.1080/10426500008076341

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NEW BIOLOGICALLY ACTIVE N-(TETRAHYDROBENZOTHIENOPYRIMIDIN-4-YL)-AMINO ACIDS, THIOURETHANE, SULFONAMIDES AND RELATED COMPOUNDS

M.M. GHORAB*

Department of Drug Radiation Research, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo, Egypt

(Received July 28, 1999; In final form October 15, 1999)

Some derivatives of thieno[2,3-d]pyrimidine containing amino acids 3a-i, imidazoles 4a-f, isothiocyanate 5, thiourethane 6, triazine 8, pyrimidine 10, sulphonamides 13a-d, 14, pyrazole 16 and pyrazolone 17 were synthesized. The structural assignments of the new compounds were based on analytical, spectroscopic measurements and chemical reactions. Some of the obtained compounds showed interesting antimicrobial activities.

Keywords: Amino acids; thiourethane; sulfonamides; antimicrobial activity

INTRODUCTION

Derivatives of thieno[2,3-d]pyrimidine are known to be potential bioactive molecules. They have various biological activities including antibacterial¹, antifungal², antimicrobial³, antitumor⁴, radioprotection⁵, antiallergic⁶, analgesic⁷ and CNS⁸ activities. Also, compounds having amino acid moieties are known to possess a wide rang of biological and pharmacological activity⁹. In addition sulphonamides have been widely used as bacteriostatic agents ^{10,11}. In the present paper I report the synthesis of some compounds combining amino acids, imidazoles, thiourethane, sulfonamides,

^{*} Correspondence Author.

pyrazole, and pyrazolone with the thienopyrimidine moiety to evaluate their antimicrobial activities against Gram positive and Gram negative bacteria and yeast.

RESULTS AND DISCUSION

The present work was aimed at synthesizing new thienopyrimidine derivatives expected to have antimicrobial activity. When the chloro derivative 1^{12} was allowed to react with the sodium salt of various amino acids under reflux at pH 9-9.5, the corresponding N-(5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidin-4-yl)-amino acids 3a-i were afforded (Scheme 1). The structure of products which showed v NH and vC=O in the 3430-3250 and 1750-1700 cm⁻¹ regions respectively, in addition to another band in the 1254-124 cm⁻¹ region for a -COOH group 13.

SCHEME 1

The amino acid derivatives 3a-f were then cyclized with acetic anhydride in the presence of anhydrous sodium acetate¹⁴ to give the imidazol derivatives 4a-f, its IR spectra showed the absence of (NH) band. The pos-

tulated structures were confirmed by IR, ¹HNMR, mass spectral data (Table I) and elemental analysis. The 5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidin-4-yl-isothiocyanate 5 was obtained via reaction of the chloro derivative 1 with ammonium sulfocyanide in dry acetone. The IR spectrum showed a strong absorption band at 2165 cm⁻¹ due to (-N=C=S), (Scheme 2).

SCHEME 2

The thiourethane 6 was readily obtained upon heating the isothiocyanate 5 in absolute ethanol. The reactivity of isothiocyanate group in compound 5 was further investigated through reaction with ethylene glycol to give the corresponding hydroxy derivative 7. Structure of 6 was established based on ¹H NMR which showed a triplet at 1.4 ppm and a quartet at 4.4 ppm due to the OCH₂CH₃ moiety and confirmed by mass spectrum which showed m/z (%): 293 (8.12, M⁺); (Table I).

Downloaded At: 13:12 28 January 2011

TABLE I Physical and spectral data of the synthesized compounds 3-17

Compd.	M.P. (°C)	Compd. M.P. (°C) Mol. Formula	Elemental analyses Calculated/Found	Elemental analyses Calculated/Found	alyses	IR (cm ⁻¹)	'HBMR (δ ppm)
	(a)	(1111)	%)	H% N%	N%		
38	230-232	C ₁₂ H ₁₃ N ₃ O ₂ S	54.69	4.93	15.95	3423 (NH), 2930 (CH aliph), 1730	230-232 C ₁₂ H ₁₃ N ₃ O ₂ S 54.69 4.93 15.95 3423 (NH), 2930 (CH aliph), 1730 1.6, 2.8 (2s, 8H, 4CH ₂ cyclo), 4.1 (s,2H,α-CH ₂),
	82	(263.3)	54.50	4.70	54.50 4.70 15.80	(C=0), 1244 (CO ₂ H)	7.7 (s, 1H, NH), 8.1 (s, 1H, CH pyrimidine-H).
3 b	215-217	$C_{13}H_{15}N_3O_2S$	56.25	5.41	15.14	56.25 5.41 15.14 3415 (NH), 2938 (CHaliph), 1700	1.7, 2.6 (2s, 8H, 4CH ₂ cyclo), 3.4 (d, 3H, CH ₃),
	62	(277.3)	56.40	5.20	56.40 5.20 15.30	(C=O), 1241 (CO ₂ H)	4.9 (m, 1H, α-CH), 7.6 (s,1H,NH), 8.4(s,1H, CH pyrimidine-H).
36	164-166	164-166 C ₁₅ H ₁₉ N ₃ O ₂ S	58.97	6.22	13.76	58.97 6.22 13.76 3430 (NH), 2948 (CH aliph), 1700	1.1(t, 6H, \(\gamma\)-CH3) 1.5, 2.8(2s, \(8\)H, 4CH2 cyclo),
	08	(305.2)	58.90	9.10	13.50	58.90 6.10 13.50 (C=O), 1250 (CO ₂ H)	2.4(m, 1H, β-CH), 4.1 (m,1H,α-CH), 7.5 (s, 1H, NH), 8.0 (s, 1H, CH pyrimidine-H).
34	152-154	$C_{16}H_{21}N_3O_2S$		6.57	13.15	60.11 6.57 13.15 3392 (NH), 2946 (CH aliph), 1740	0.7(d,6H,2CH ₃), 1.5, 2.6(2s, 8H, 4CH ₂ cyclo),
		(319.4)	60.30	98.9	60.30 6.80 13.40	(C=O), 1254 (CO ₂ H)	2.2 (t,2H,β-CH ₂), 4.3(m,1H,β-CH), 5.8 (t,1H,α-CH), 7.7(s, 1H, NH), 8.0(s,1H,CH pyrimidine-H)
Зе	196–198	$C_{15}H_{19}N_3O_2S_2$	53.35	5.63	12.44	196-198 C ₁₅ H ₁₉ N ₃ O ₂ S ₂ 53.35 5.63 12.44 3390(NH), 2927(CH aliph), 1720	1.5, 2.8 (2s, 8H, 4CH ₂ cyclo), 2.1 (s,3H, SCH ₃), 2.3 (m,
	8	(337.4)	53.60	5.80	53.60 5.80 12.20	(C=O), 1249 (CO ₂ H)	2H,β-CH ₂), 2.6(m, 2H,γ-CH ₂), 4.5(m,1H,α-CH), 7.6 (s, 1H, NH), 8.2(s,1H,CH pyrimine-H).
3£	174-176	$C_{19}H_{19}N_3O_2S$		5.37	11.88	64.51 5.37 11.88 3250 (NH), 2940 (CH aliph),	1.6, 2.8(2s, 8H, 4CH ₂ cyclo), 3.3 (d,2H, β-CH ₂),
	11	(353.4)	64.30	5.20	11.60	64.30 5.20 11.60 1710 (C=O), 1248 (CO ₂ H)	4.9(q,1H,\a-CH), 7.0-7.6 (m,5H, arom), 7.8 (s, 1H, NH), 8.1 (s, 1H, CH pyrimidine-H).
38	229-231	$C_{13}H_{15}N_3O_3S$	53.18	5.11	14.32	53.18 5.11 14.32 3500 (OH), 3420 (NH), 2920 (CH	1.6, 2.7 (2s, 8H, 4CH ₂ cyclo), 2.3 (m,2H, β-CH ₂),
	72	(293.3)	53.40 5.30 14.20	5.30	14.20	aliph), 1730 (C=O), 1248 (CO ₂ H)	3.2 (m, 1H, α-CH), 7.0(s, 1H, NH), 7.6 (s, 1H, OH), 8.3 (s, 1H, CH pyrimidine-H)

Compd.	Compd. M.P. (°C)	Mol. Formula	Elemental analyses Calculated/Found	ıtal anı ated/F	alyses	IR (cm ⁻¹)	'HBMR (8 ppm)
	(a) lareau		%)	C% H% N%	%N		
34	252-254	C14H15N3O4S	52.28	4.66	13.07	52.28 4.66 13.07 3390 (NH), 2910 (CH aliph), 1700	1.6, 2.7 (2s, 8H,4CH ₂ cyclo), 2.9 (d,2H, \(\beta\)-CH ₂),
	62	(321.3)	52.50	4.40	13.20	52.50 4.40 13.20 (C=O), 1254 (CO ₂ H)	4.9 (m, 1H, α-CH), 7.7(s, 1H, NH), 8.2(s,1H, CH pyrimidine-H).
3.	170-172	C15H17N3O2S	59.34	5.60	13.84	59.34 5.60 13.84 1720 (C=O), 1630 (C=N), 1251	1.7, 2.8 (2s, 8H, 4CH ₂ cyclo), 2.0 (m, 2H, r-CH ₂),
	89	(303.3)	59.10	5.40	13.90	59.10 5.40 13.90 (CO ₂ H).	2.4 (m,2H, β-CH ₂), 3.9 (m,2H δ-CH ₂), 4.3 (m,1H,δ-CH), 8.1(s, 1H, CH pyrimidine-H).
4a	280-282	C ₁₂ H ₁₁ N ₃ OS	58.70	4.48	17.12	58.70 4.48 17.12 1700 (C=O), 1630 (C=N)	1.8, 2.6 (2s, 8H,4CH ₂ cyclo), 3.2 (s,2H, CH ₂),
	98	(245.3)	58.50 4.70 17.30	4.70	17.30		8.0 (s, 1H, CH pyrimidine-H).
4	186-188	$C_{13}H_{13}N_3OS$	91.09	5.01	16.19	60.16 5.01 16.19 1690 (C=O), 1610 (C=N)	1.6, 2.8 (2s, 8H,4CH ₂ cyclo), 2.4 (d, 3H, CH ₃),
	69	(259.3)	60.30 5.20 16.30	5.20	16.30		5.4 (q, 1H, α-CH), 8.3 (s, 1H, CH pyrimidine-H).
46	174-176	C ₁₅ H ₁₇ N ₃ OS	62.65	5.91	14.61	62.65 5.91 14.61 1680 (C=O), 1600 (C=N)	0.9(d, 6H, 2CH ₃), 1.9,2.8 (2s, 8H, 4CH ₂ cyclo),
	0/	(287.3)	62.40 5.60 14.40	5.60	14.40		5.2 (m,1H,β-CH), 5.6(d,1H,α-CH), 8.3 (s,1H, CH pyrimidine-H).
44	146-148	C ₁₆ H ₁₉ N ₃ OS	63.70	6.30	13.93	63.70 6.30 13.93 1700 (C=O), 1640 (C=N)	
	59	(301.4)	63.90 6.10 14.10	9.10	14.10		
4	127-129	C ₁₅ H ₁₇ N ₃ OS ₂	56.35	5.32	13.15	56.35 5.32 13.15 1705 (C=O), 1620 (C=N)	1.7, 2.8 (2s, 8H, 4CH ₂ cyclo), 2.0 (1,2H, CH ₂ S-),
	2	(319.4)	56.60 5.10 13.30	5.10	13.30		2,2(s,3H,SCH ₃), 2.2 (s, 3H, SCH ₃), 2.6(m,2H,β-CH ₂), 5.8(s, 1H,α-CH), 8.3(s,1H,CH pyrimidine-H).
4€	134-136	C ₁₉ H ₁₇ N ₃ OS	64.99	5.07	12.52	67.99 5.07 12.52 1710 (C=O), 1630 (C=N)	1.8, 2.8(2s, 8H, 4CH ₂ cyclo), 3.7(d,2H, \(\beta\)-CH ₃),
	89	(335.3)	67.70 5.20 12.70	5.20	12.70		4.8(t,1H,α-CH), 7.2–7.6 (m, 5H,arom.), 8.2(s,1H, CH pyrimidine-H).

M.P. (°C) Yield(%)	Mol. Formula	Elemen	Elemental analyses	Elemental analyses Calculated/Found	, l =, at	
(or huan	(44.) 11/1		ומוברה י		/ wal w	HBMR (S ppm)
	(2007: 111)	%)	H% N%	N%		
154-156	C ₁₁ H ₉ N ₃ S ₂	53.37	3.64	16.98	53.37 3.64 16.98 2165 (-N=C=S), 1610 (C=N)	1.5, 2.6 (2s, 8H, 4CH ₂ cyclo), 8.4(s, 1H,
84	(247.3)	53.20 3.90 16.70	3.90	16.70		CH pyrimidine-H).
210-212	$C_{13}H_{15}N_3OS_2$	53.17	5.11	14.31	53.17 5.11 14.31 3200(NH), 2900(CH aliph), 1608	1.4(t,3H,CH ₃), 1.9, 2.8 (2s,8H,4CH ₂ cyclo),
92	(293.4)	53.40	5.30	14.10	(C=N), 1280 (C=S)	4.41.4(t,3H,CH ₃), 1.9, 2.8 (2s,8H,4CH ₂ cyclo), 4.4 1.4(t,3H,CH ₃), 1.9, 2.8 (2s,8H,4CH ₂ cyclo), 4.4 (q,2H,CH ₂), 7.9(s,1H,NH),8.3 (s,1H, CH pyrimidine-H).
205-207	$C_{13}H_{15}N_3O_2S_2$	50.42	4.84	13.57	3500(OH), 3310(NH), 2920 (CH	1.6,2.7(2s,8H,4CH ₂ cyclo), 2.1 (t,2H,OCH ₂),
69	(309.4)	20.60	4.70	13.30	aliph), 1620 (C=N), 1320 (C=S)	3.6 (m, 2H, HOCH ₂), 7.8 (s, 1H,NH), 8.2 (s, 1H, CH pyrimidine-H), 8.4(s, 1H,OH).
216-218	$C_{13}H_{12}N_4S_2$	54.11	4.16	19.42	1610, 1630 (C=N), 1310 (C=S)	1.7, 2.8(2s,8H,4CH2 cyclo), 2.2 (s,3H, CH2),
44	(288.3)	4.30	4.40	19.10		8.3(s,1H, pyrimidine-H).
212-214	C ₁₄ H ₁₁ N ₅ S ₂	53.60	3.51	22.33		
99	(313.4)	53.30	3.20	22.50		
80-82	C ₁₂ H ₁₅ N ₃ OS	57.76	6.01	16.84	3500 (OH), 3220 (NH), 1620	1.9, 2.9(2s,8H,4CH ₂ cyclo), 3.7 (m,2H,-NCH ₂),
82	(249.3)	7.50	6.20	16.60	(C=N)	4.9 (1,2H,OCH ₂), 6.4 (1,1H,NH), 8.2 (s,1H, CH pyrimidine-H)
180-182	C ₁₃ H ₁₇ N ₃ OS	59.24	6.45	15.95	3500 (OH), 3310 (NH), 1630	1.7, 2.7(2s,8H,4CH ₂ cyclo), 3.3 (m,4H,-NCH ₂ CH ₂),
68	(263.3)	59.50	9.60	15.70	(C=N)	4.5 (1,2H,OCH ₂), 6.4(t,1H,NH), 8.1(s,1H, CH pyrimidine-H)
	76 205-207 69 216-218 44 212-214 66 80-82 82 180-182	76 (293.4) 205-207 C ₁₃ H ₁₅ N ₃ O ₂ S ₂ 69 (309.4) 216-218 C ₁₃ H ₁₂ N ₄ S ₂ 44 (288.3) 212-214 C ₁₄ H ₁₁ N ₅ S ₂ 66 (313.4) 80-82 C ₁₂ H ₁₅ N ₃ OS 82 (249.3) 180-182 C ₁₃ H ₁₇ N ₃ OS	7 205–207 C ₁₃ H ₁₅ N ₃ O ₂ S ₂ 50.42 8 ^a 216–218 C ₁₃ H ₁₂ N ₄ S ₂ 54.11 44 (288.3) 54.30 10 ^a 212–214 C ₁₄ H ₁₁ N ₅ S ₂ 53.60 66 (313.4) 53.30 11a 80–82 C ₁₂ H ₁₅ N ₃ OS 57.76 82 (249.3) 57.50 11b 180–182 C ₁₃ H ₁₇ N ₃ OS 59.24 89 (263.3) 59.50	76 (293.4) 53.40 5.3.0 205-207 C ₁₃ H ₁₅ N ₃ O ₂ S ₂ 50.42 4.84 69 (309.4) 50.60 4.70 216-218 C ₁₃ H ₁₂ N ₄ S ₂ 54.11 4.16 44 (288.3) 54.30 4.40 212-214 C ₁₄ H ₁₁ N ₅ S ₂ 53.60 3.51 66 (313.4) 53.30 3.20 80-82 C ₁₂ H ₁₅ N ₃ OS 57.76 6.01 82 (249.3) 57.50 6.20 180-182 C ₁₃ H ₁₇ N ₃ OS 59.24 6.45 89 (263.3) 59.50 6.60	76 (293.4) 53.40 5.30 14.10 205-207 C ₁₃ H ₁₅ N ₃ O ₂ S ₂ 50.42 4.84 13.57 69 (309.4) 50.60 4.70 13.30 216-218 C ₁₃ H ₁₂ N ₄ S ₂ 54.11 4.16 19.42 44 (288.3) 54.30 4.40 19.10 212-214 C ₁₄ H ₁₁ N ₅ S ₂ 53.60 3.51 22.33 66 (313.4) 53.30 3.20 22.50 80-82 C ₁₂ H ₁₅ N ₃ OS 57.76 6.01 16.84 82 (249.3) 57.50 6.20 16.60 180-182 C ₁₃ H ₁₇ N ₃ OS 59.50 6.60 15.70	3.40 5.30 14.10 0.42 4.84 13.57 0.60 4.70 13.30 44.11 4.16 19.42 43.30 4.40 19.10 33.60 3.51 22.33 33.30 3.20 22.50 77.76 6.01 16.84 77.50 6.20 16.60

Compd.	M.P. (°C)	Compd. M.P. (°C) Mol. Formula No. Sciences (M.J. We)	Elemer	Elemental analyses Calculated/Found	alyses	IR (cm ⁻¹)	'HBMR (δ ppm)
Ě	(busy		%)	C% H% N%	Nc%		
12a	176-178	C ₁₂ H ₁₃ N ₃ S	62.25	5.62	18.15	62.25 5.62 18.15 1607 (C=N)	1.6. 2.7(2s,8H,4CH ₂ cyclo), 4.2 (m,4H,-CH ₂ CH ₂ -),
	78	(231.3)	62.50	62.50 5.30 18.40	18.40		8.3 (s, 1H, CH pyrimidine-H)
12b	>280	$C_{13}H_{15}N_3S$	63.59	6.11	17.12	63.59 6.11 17.12 1620 (C=N)	
	19	(245.3)	63.40	63.40 6.30 17.40	17.40		
13a ^b	> 280	C16H16N4O2S2	53.27	4.44	15.53	C ₁₆ H ₁₆ N ₄ O ₂ S ₂ 53.27 4.44 15.53 3430, 3338, 3253 (NH, NH ₂),	1.7, 2.6 (2s,8H,4CH ₂ cyclo), 5.7(s,2H,-NH ₂), 7.1-7.8
	83	(360.4)	53.50	4.20	53.50 4.20 15.20	1607 (C=N)	(m, 4H, arom),8.2(s,1H, CH pyrimidine-H), 9.0 (s, 1H, NH).
13b	225-227	$C_{21}H_{19}N_5O_2S_2$	57.60	4.34	16.00	225-227 C ₂₁ H ₁₉ N ₅ O ₂ S ₂ 57.60 4.34 16.00 3350, 3270(NH), 1610 (C=N)	1.6, 2.8(2s,8H,4CH ₂ cyclo), 7.1-7.9 (m, 8H, arom.),
	59	(437.5)	57.30	57.30 4.10 16.20	16.20		8.2 (s, 1H, CH pyrimidine-H) 8.4 (s,1H,NH), 11.5 (s, 1H, NH).
13c	>280	$C_{20}H_{18}N_6O_2S_2$	54.73	4.10	19.15	$C_{20}H_{18}N_6O_2S_2$ 54.73 4.10 19.15 3380, 3290 (NH), 1630 (C=N)	1.8, 2.8(2s,8H,4CH ₂ cyclo), 7.0-8.0 (m, 7H,arom.),
	19	(438.5)	54.90	54.90 4.30 19.40	19.40		8.2 (s, 1H, CH pyrimidine-H) 8.5 (s,1H,NH), 11.7 (s, 1H, NH).
13d	230-232	$C_{21}H_{21}N_5O_3S_2$	55.32	4.61	15.36	$C_{21}H_{21}N_{5}O_{3}S_{2}$ 55.32 4.61 15.36 3410, 3350 (NH), 1620 (C=N)	1.8, 2.9 (2s,8H,4CH ₂ cyclo), 2.0, 2.2 (2s,6H,2CH ₃),
	54	(455.5)	55.60	55.60 4.40 15.10	15.10		7.1-7.6 (m,4H,arom.), 8.2 (s,1H,CH pyrimidine-H) 8.4 (br, 2H, 2NH).
7	250-252		53.27	4.44	15.53	C ₁₆ H ₁₆ N ₄ O ₂ S ₂ 53.27 4.44 15.53 3353 3230 (NH ₂), 1600 (C=N)	1.5, 2.7(2s,8H,4CH2 cyclo), 5.4 (s,2H,NH2), 7.0-7.9
	78	(360.4)	53.50	53.50 4.60 15.70	15.70		(m, 4H,arom.), 8.3 (s,1H, CH pyrimidine-H), 9.2 (s, 1H, NH).
15 a	230-232	$C_{13}H_{10}N_4S$	61.34	3.93	22.02	61.34 3.93 22.02 2192,2185 (2C≡N), 1630 (C=N)	1.6, 2.8 (2s, 8H, 4CH2 cyclo), 6.7 (s, 1H, CH),
	89	(254.3)	09.19	61.60 4.20	22.20		8.2 (s, 1H, CH pyrimidine-H).

1	
2011	
January	
28	
1 At: 13:12	
At:	
Downloaded	

15b 218-220 C ₁₅ H ₁₅ N ₃ O ₂ S 59.74 4.97 13.94 2200 (C=N), 1740 (C=O), 1640 1.2 (t, 3H (CH ₃), 1.7, 2.8 (2s, 8H, 4CH ₃ cyclo), 4.3 (q, 2H, CH ₃), 1.7, 2.8 (2s, 8H, 4CH ₃ cyclo), 4.3 (q, 2H, CH ₃), 1.7, 2.8 (2s, 8H, 4CH ₃ cyclo), 4.3 (q, 2H, CH ₃), 1.7, 2.8 (2s, 8H, 4CH ₃ cyclo), 4.3 (q, 2H, CH ₃), 1.7, 2.8 (2s, 8H, 4CH ₃ cyclo), 5.8 (s, 1H, CH), 8.3 (s, 1H, CH), 1.8, 2.8 (s, 4H, 2NH ₂), 8.2 (s, 1H, CH), 1.8, 2.8 (s, 4H, 2NH ₂), 8.2 (s, 1H, CH), 1.8, 2.8 (s, 2H, NH ₂), 8.2 (s, 1H, NH ₃), 8.2 (s, 1H, NH ₃), 8.2 (s, 1H, NH ₃), 8.3 (s, 1H, NH ₃)	Compd.	M.P. (°C)	Compd. M.P. (°C) Mol. Formula Calculated/Found	Elemental analyses Calculated/Found	tal an ned/F	alyses	IR (cm ⁻¹)	'HBMR (8 ppm)
218–220 C ₁₅ H ₁₅ N ₃ O ₂ S 59.74 4.97 13.94 2200 (C=N), 1740 (C=O), 1640 63 (301.3) 59.80 4.60 13.70 (C=N). 259–261 C ₁₃ H ₁₄ N ₆ S 54.48 4.89 29.34 3361, 3329, 3130 (NH, NH ₂), 54 (286.3) 54.70 4.60 29.60 1645 (C=N) 5280 C ₁₃ H ₁₃ N ₅ OS 54.29 4.52 24.36 3330, 3248, 3215 (NH, NH ₂), 60 (287.3) 54.60 4.30 24.10 1680 (C=O), 1630 (C=N) 4S. m/z (%) for compound 5; 247 (100, M ⁺); 6. 293 (8.12, M ⁺), 69 (100); 8: 289 (18.3, M+1)	9		(MOL. MI)	%)	<i>Н</i> %	N%		
63 (301.3) 59.80 4.60 13.70 (C=N). 259–261 C ₁₃ H ₁₄ N ₆ S 54.48 4.89 29.34 3361, 3329, 3130 (NH, NH ₂), 54 (286.3) 54.70 4.60 29.60 1645 (C=N) > 280 C ₁₃ H ₁₃ N ₅ OS 54.29 4.52 24.36 3330, 3248, 3215 (NH, NH ₂), 60 (287.3) 54.60 4.30 24.10 1680 (C=O), 1630 (C=N) MS: m/z (%) for compound 5; 247 (100, M ⁺); 6: 293 (8.12, M ⁺), 69 (100); 8: 289 (18.3, M+1)	15b	218-220	C15H15N3O2S	59.74	4.97	13.94	2200 (C≡N), 1740 (C=O), 1640	1.2 (t, 3H (CH ₃), 1.7, 2.8 (2s, 8H, 4CH ₂ cyclo),
259–261 C ₁₃ H ₁₄ N ₆ S 54.48 4.89 29.34 3361, 3329, 3130 (NH, NH ₂), 54 (286.3) 54.70 4.60 29.60 1645 (C=N) > 280 C ₁₃ H ₁₃ N ₅ OS 54.29 4.52 24.36 3330, 3248, 3215 (NH, NH ₂), 60 (287.3) 54.60 4.30 24.10 1680 (C=O), 1630 (C=N) MS: m/z (%) for compound 5; 247 (100, M ⁺); 6: 293 (8.12, M ⁺), 69 (100); 8: 289 (18.3, M+1)		63	(301.3)	59.80	4.60	13.70	(C=N).	4.3 (q, 2H, CH ₂), 6.5 (s, 1H, CH), 8.3(s,1H, CH pyrimidine-H).
54 (286.3) 54.70 4.60 29.60 1643 (C=N) 8.2 (s, 1H, CH pyrimidine-Hi, 9.3 (s,1H,NH). 17 > 280 C ₁₃ H ₁₃ N ₅ OS 54.29 4.52 24.36 3330, 3248, 3215 (NH, NH ₂), 1.6, 2.7 (2s, 8H, 4CH ₂ cyclo), 5.6 (s,2H, NH ₂), 6.0 (C=O), 1630 (C=N) 8.1 (s, 1H, CH pyrimidine-H), 9.2, 9.4 (2s, 2H, NH ₂), 6.2 (100), 1.6 (100); 8: 289 (18.3, M+1), 59 (100); 10: 313 (0.8, M*), 222 (100), 10. 313 (0.8, M*), 222 (100), 223 (0.8, M*), 223 (0.8, M	91	259-261	$C_{13}H_{14}N_6S$	54.48	4.89	29.34	3361, 3329, 3130 (NH, NH ₂),	1.8, 2.6 (2s, 8H, 4CH ₂ cyclo), 5.8 (s, 4H, 2NH ₂),
17 > 280 C ₁₃ H ₁₃ N ₅ OS 54.29 4.52 24.36 3330, 3248, 3215 (NH, NH ₂), 1.6, 2.7 (2s, 8H, 4CH ₂ cyclo), 5.6 (s,2H, NH ₂), 6.2 24.36 4.30 24.10 1680 (C=O), 1630 (C=N) 8.1 (s, 1H, CH pyrimidine-H), 9.2, 9.4 (2s, 2H, R), 6.2 24 (100, M ⁺); 6.2 293 (8.12, M ⁺), 69 (100); 8.2 89 (18.3, M+1), 59 (100); 10:313 (0.8, M ⁺), 222 (100) 8.2 (100); 10:313 (0.8, M ⁺), 222 (100)		54	(286.3)	54.70	4.60	29.60		8.2 (s, 1H, CH pyrimidine-H), 9.5 (s,1H,NH).
a. MS: m/z (%) for compound 5; 247 (100, M*); 6: 293 (8.12, M*), 69 (100); 8: 289 (18.3, M+1), 59 (100); 10: 313 (0.8, M*), 222 (100)	17	> 280	$C_{13}H_{13}N_5OS$	54.29	4.52	24.36	3330, 3248, 3215 (NH, NH ₂),	1.6, 2.7 (2s, 8H, 4CH ₂ cyclo), 5.6 (s,2H, NH ₂),
a. MS: m/z (%) for compound 5; 247 (100, M ⁺); 6: 293 (8.12, M ⁺), 69 (100); 8: 289 (18.3, M+1), 59 (100); 10: 313 (0.8, M ⁺), 222 (100); MS: m/s (0.8) for compound 13a, 250 (100, M ⁺)		8	(287.3)	54.60	4.30	24.10	1680 (C=O), 1630 (C=N)	8.1 (s, 1H, CH pyrimidine-H), 9.2, 9.4 (2s, 2H, 2NH).
	a. MS:	m/z (%) for	compound 5; 247	(100, M	÷ 6	293 (8.	12, M ⁺), 69 (100); 8: 289 (18.3, M+	.1), 59 (100); 10: 313 (0.8, M*), 222 (100)

Fusion of the isothiocyanate 5 with methyl cyanide proceedes through [4+2]cycloadition¹⁵ to furnish the triazine derivative 8. The IR spectrum of 8 showed the absence of (-N=C=S) band in the parent compound. The ¹HNMR of 8 was characterized by the methyl protons at 2.2 ppm. The mass spectrum of 8showed m/z (%): 289 (18.3, M+1). It was reported that the condensation of isothiocyanate with active methylene (malononitrile or ethyl cyanoacetate) was exploited in the synthesis of heterocyclic derivatives 16. Thus, interaction of the isothiocyanate 5 with malononitrile in presence of sodium ethoxide gave the pyrimidine derivative 10 through the intermediate 9. The IR spectrum of 10 exhibited bands at 3360, 3280, 2210 due to (NH₂) and (C≡N). Interaction of the chloro derivative 1 with ethanolamine or 3-amino propanol in pyridine yielded the hydroxy compounds 11a.b, which cyclized by action of thionyl chloride to give the imidazole or pyrimidine derivatives 12a or 12b, respectively. The IR spectra of 11a,b showed the presence of (OH) band at 3500 cm⁻¹ and (NH) band at 3310, 3220 cm⁻¹. The IR spectra of 12a,b showed the disappearance of (OH) and (NH) bands (Table I). H NMR spectra of 11a,b showed the presence of methylene protons. Condensation of the chloro derivative 1 with some sulpha drugs in N,N-dimethyl-formamide (DMF) only gave the sulfonamide derivatives 13a-d, whereas, conducting this reaction in presence of anhydrous K₂CO₃¹⁷ afforded sulfanilamide derivative 14 (Scheme 3).

SCHEME 3

Compound 1 reacted with active methylene compounds (malononitrile or ethyl cyanoacetate) in pyridine to afford the corresponding 4-alkylth-ienopyrimidine derivative 15a,b. The IR spectrum of 15a showed absorption bands at 2192, 2185 (2 C≡N), IR spectrum of 15b exhibited bands at 2200 (C≡N), 1740 (C=O) ¹H NMR of 15bshowed a triplet at 1.2 ppm and a quartet at 4.3 ppm due to the -COOCH₂CH₃ moiety. Treatment of 15a,b with hydrazine hydrate in boiling ethanol furnished the pyrazole 16 and pyrazolone 17. The IR spectra showed the disappearance of (C≡N) and presence of (NH, NH₂) bands at 3361-3130 cm⁻¹; (Table I).

BIOLOGICAL ACTIVITY

The prepared compounds were evaluated for their antimicrobial activity using the agar diffusion technique ¹⁸. A 1 mg/ ml solution in dimethylformamide was used. The test organisms were Gram positive bacteria (Bacillus ceraus and Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Candida albicans) (local isolate). DMF showed no inhibition zones. The minimal inhibitory concentration (MIC) of some of the tested compounds was measured using the two fold serial dilution method. Amikin was taken (in a concentration of 30 μ g/ml) as a reference antibiotic.

Results (Table II) revealed that compounds 3c, 3i, 4c, 4f, 13d and 15a are highly active against Gram positive bacteria and their (MIC values were < $25 \mu g/ml$). Compounds 3a, 3e, 3f, 3i and 4f possess high potency against Gram negative bacteria and their (MIC values were < $50 \mu g/ml$). These active compounds showed a considerable antimicrobial activity compared to the antibiotic Amikin. On the other hand compounds 3a, 3c, 3d, 3e, 3f, 4b, 4c, 4f and 15a showed the highest activity against yeast (Candida albicans) and their (MIC values were < $50 \mu g/ml$). The other tested compounds showed mild activities against the tested micro-organisms.

EXPERIMENTAL

All m.p.'s are uncorrected. IR spectra (cm⁻¹) were taken with a Perkin Elmer FT-IR spectrophotometer as KBr pellets. ¹HNMR spectra were

recorded on a varian EM-390 (90 MHz) spectrophotometer using DMSO-d₆ as a solvent. Mass spectra were recorded on a HP MODEL MS-5988 instrument at 70 eV. Microanalytical data were obtained from the microanalytical data unit at Cairo University, Egypt.

TABLE II Antimicrobial activity of the prepared compounds

Compd. No.	Bacillus ceraus	Staphylococcus aureus	Eschericha coli	Pseudomonas aeruginosa	Candida albicans
3a	++++	++++	+	++++	+++
3b	++++	++++	+	+++	++
3c	++++	+++++	+	+++	+++
3d	+++	++++	+++	++	+++
3 e	+++	+++	+++	+++	+++
3f	+++	++++	+++	+++	+++
3g	+++	++++	++	++	+
3h	++	+++	+	+++	++
3i	+++++	++++	+++	++++	++
4a	++	+++	+	++	+
4b	+++	++++	+	+++	+++
4c	+++	++++	+	++	+++
4d	+++	++++	+++	++	+
4e	+++	+++	++	++	+
4f	+++	++++	+++	+++	+++
5	++	+++	+	++	++
6	++	+++	+	+	++
7	+	+	++	+	++
8	++	+++	++	+	++
10	+++	+++	++	+	++
lla	+++	++++	+	+	++
116	+++	++++	+	+	+
12a	+++	++	+	+	++
12b	+++	++	+	+	++
13a	+++	+++	+	++	++
13b	+++	+++	+	++	+
13c	++	++++	+	++	+

Compd. No.	Bacillus ceraus	Staphylococcus aureus	Eschericha coli	Pseudomonas aeruginosa	Candida albicans
13d	+++	++++	+	++	++
14	++++	++++	+	++	++
15a	+++++	+++++	++	++	+++
15b	++++	++++	++	+	++
16	++	++	+	+	++
17	++	+	+	++	+
Amikin	++++	++++	++	++	

^{+: 1} to 1.5 cm; ++: 1.5 to 2 cm; +++: 2 to 3 cm; ++++: 3 to 4 cm; +++++: 4 to 5 cm.

Synthesis of N-(5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d] pyrimidin-4-yl)amino acids 3a-i

The amino acid (9.60 mmol) and sodium carbonate (5.40 mmol) were dissolved in water (10 ml), then adjusted to pH 9-9.5. The chloro derivative 1 (4.80 mmol) was then added and the mixture was stirred at 100°C for 6 h with control of pH. The reaction mixture was left overnight at room temperature, then treated with formic acid (88%). The solid product obtained was filtered off, washed with water and crystallized from dioxane to give 3a-i; (Table I).

Synthesis of 2-Substituted-3-oxo-8,9,10,11-tetrahydro[1]benzothieno [2',3':4,5]pyri-mido[6,1-c]imidazole 4a-f

A mixture of **3a-f** (10 mmol), acetic anhydride (5 ml), and anhydrous sodium acetate (10 mmol) was heated under reflux for 3 h. The solvent was removed and the residue washed with water, filtered, dried and crystallized from DMF-EtOH; (Table I).

Synthesis of 5,6,7,8-Tetrahydrobenzo[b]thieno[2,3-d]pyrimidin-4-yl-isothiocyanate 5

A mixture of the chloro derivative 1 (10 mmol) and NH₄SCN (10 mmol) was refluxed in dry acetone (30 ml) for 1 h. The solvent was then removed and the residue was crystallized from acetone to give 5; (Table I).

Synthesis of 4-(Ethoxythiocarbonylamino)-5,6,7,8,-tetrahydrobenzo [b]thieno[2,3-d]-pyrimidine 6

A solution of the isothiocyanate derivative 5 (10 mmol) in absolute ethanol (20 ml) was refluxed for 5 h. The solvent was then removed and the residue was washed with ethanol, then crystallized from ethanol to give 6; (Table I).

Synthesis of 4-[(2-Hydroxyethyloxy)thiocarbonylamino]-5,6,7,8-tetrahydrobenzo[b]-thieno[2,3-d]pyrimidine 7

To a solution of 5 (10 mmol) in benzene (20 ml), ethylene glycol (10 mmol) was added and the mixture was heated under reflux for 8 h, then left overnight at room temperature. The precipitated product was collected by filtration and crystallized from dioxane to give 7; (Table I).

Synthesis of 4-Methyl-6-thioxo-9,10-,11,12-tetrahydro[1] benzothieno[2',3':4,5]-pyrimido-[6,1-c][1,3,5]triazine 8

The isothiocyanate derivative 5 (10 mmol) was added to acetonitrile (5 ml) and the reaction mixture was refluxed for 48 h, cooled and the obtained product was crystallized from dioxane to give 8; (Table I).

Synthesis of 4-Amino-5-cyano-2-thioxo-9,10,11,12-tetrahydro[1] benzothieno-[2',3':4,5]pyrimido[6,1-c]pyrimidine 10

To a solution of sodium ethoxide (0.23 g Na in 10 ml absolute C_2H_5OH). compound 5 (10 mmol) and malononitrile (10 mmol) were added and the reaction mixture was refluxed for 6 h, cooled and neutralized with dilute HCl (10%). The obtained product was filtered, washed with ethanol and crystallized from DMF- H_2O to give 10; (Table I).

Synthesis of 2-(5,6,7,8-Tetrahydrobenzo[b]thieno[2,3-d] pyrimidinylamino)-1-ethanol 11a and 3-(5,6,7,8-tetrahydrobenzo[b] thieno[2,3-d]pyrimidinylamino)-1-propanol 11b

A mixture of 1 (10 mmol) and ethanolamine or 3-aminopropanol (10 mmol) in 20 ml of pyridine was refluxed for 12 h, then cooled and

poured into an ice/HCl mixture. The separated solid was filtered off, washed with water, and crystallized from ethanol to give 11a,b; (Table I).

Synthesis of 2,3,8,9,10,11-hexahydro[1]benzothieno[2',3':4,5] pyrimido[6,1-c]-imidazole 12a and 2,3,4,9,10,11,12-hepta[1] benzothieno[2',3':4,5]pyrimido[6,1-c] pyrimidine 12b

A solution of 11a,b (10 mmol) in thionyl chloride (5ml) was refluxed for 8 h. The precipitated solid after cooling was crystallized from ethanol to give 12a,b; (Table I).

Synthesis of N⁴-(4,5,6,7-Tetrahydrobenzo[b]thieno[2,3-d] pyrimidinyl)sulfonamide 13a-d

A mixture of the chloro derivative 1 (10 mmol) and sulpha drugs (10 mmol) in N,N-dimethylformamide (20 ml) was heated under reflux for 12 h, poured into crushed ice. The solid product was collected and crystallized from DMF-EtOH to give 13a-d; (Table I).

Synthesis of N¹-(4,5,6,7-Tetrahydrobenzo[b]thieno[2,3-d]pyrimidinyl) sulfanilamide 14

A mixture of 1 (10 mmol), sulfanilamide (10 mmol) and anhydrous K_2CO_3 (lg) was refluxed in DMF (30 ml) for 12 h, then cooled and poured into crushed ice. The solid product was collected and crystallized from DMF/ H_2O_3 (Table I).

Synthesis of 1-Dicyano-1-(5,6,7,8-tetrahydrobenzo[b]thieno [2,3-d]pyrimidine) 15a and ethyl-2-cyano-2-(5,6,7,8-tetrahydrobenzo [b]thieno[2,3-d]pyrimidinyl)acetate 15b

A solution of 1 (10 mmol) and an active methylene compound (malononitrile or ethyl cyanoacetate) (10 mmol) in pyridine (20 ml) was refluxed for 5 h, then cooled and poured into ice/HCl mixture. The separated solid was filtered off, washed with water and crystallized from ethanol to give 15a,b; (Table I).

Synthesis of 3,5-Diamino-4-(5,6,7,8-tetrahydrobenzo[b]thieno [2,3-d]pyrimidinyl)-1H-pyrazole 16 and 5-amino-4-(5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidinyl)-2,3-dihydro-1H-3-pyrazolone 17

A mixture of **15a,b** (10 mmol) and hydrazine hydrate (10 mmol) in ethanol (20 ml) was refluxed for 6 h, then allowed to cool. The solid product was collected and crystallized from ethanol to give **16,17**; (Table I).

Acknowledgements

the author thanks Dr. Ahmed I. El-Batal, Department of Drug Radiation Research, National Center for Radiation Research and Technology, for doing the antimicrobial screening.

References

- M.M. Ghorab, H.I. Heiba, M.A. El-Gawish; Phosphorus Sulfur and Silicon, 106, 85 (1995).
- [2] M.M. Ghorab, S.G. Abdel-Hamide; Phosphorus Sulfur and Silicon, 106, 9 (1995).
- [3] H.I. Heiba, M.M. Ghorab, M.A. El-Gawish; Phosphorus Sulfur and Silicon, 131, 197 (1997).
- [4] M.M. Ghorab, O.M. Nassar, A.Y. Hassan; Phosphorus Sulfur and Silicon, 134/135, 57 (1998).
- [5] M.M. Ghorab, A.Y. Hassan, O.M. Nassar, Phosphorus Sulfur and Silicon, 134/135, 447 (1998).
- [6] E. Gillespie, K.W. Dungan, A.W. Gomoll, R.J. Seidehamel; J. Immunopharmacol. 7, 655 (1985).
- [7] R. Bohm, R. Muller, R. Pech; Pharmazie 41, 661 (1986).
- [8] M.B. Devani, C.J. Shishoo, U.S. Pathak, S.H. Parikh, G.F. Shah, A.C. Padhya; J. Pharm., Sci. 65, 660 (1976).
- [9] P.A. Petynin, M.S. Khodyeva; Chemical Structure and Biological Activity in the Series of Amides of Some Carboxylic Acids. Zh. Obshch. Khim, 33, 755 (1963).
- [10] R. Shankar, A.R. Devendra, E.R. Jayasene, V.M. Reddy, V.K. Saxena and R. Srivastava; J. Ind. Chem. Soc. 60, 61 (1983).
- [11] V.S. Misra, V.K. Saxena, R. Srivastava; J. Ind. Chem. Soc. 59, 781 (1982).
- [12] J.R. Vishnu, K.P. Hrishi, J.V. Arnold; J. Heterocyclic Chem., 18, 1277 (1981).
- [13] L.J. Bellamy; The Infra-red Spectra of Complex Molecules, Wiely, New York, 275 (1975).
- [14] A.A. Afify, S. El-Nagdy, M.A. Sayed, I. Mohey; Indian J. Chem., 27B, 920 (1988).
- [15] S. Patai; The Chemistry of Cyanates and Their Thio Derivatives, part 2, John Wiely & Sons, chapter 22, page 1003 (1977).
- [16] R.M. Mohareb, A. Habash, N.S. Ibrahim, S.M. Sherief; Synthesis 228 (1987).
- [17] M.B. Hogale, A.R. Shelar, D.S. Kachare and V.K. Salunkhe; J. Indian Chem. Soc., 64, 314 (1987).
- [18] S.R. Jain, A. Kar; Planta Med. 20, 118 (1971).